HIGHER-ORDER ACCURATE, POSITIVE SEMIDEFINITE ESTIMATION OF LARGE-SAMPLE COVARIANCE AND SPECTRAL DENSITY MATRICES

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher-order accurate, positive semi-definite estimation of large-sample covariance and spectral density matrices

A new class of large-sample covariance and spectral density matrix estimators is proposed based on the notion of flat-top kernels. The new estimators are shown to be higher-order accurate when higher-order accuracy is possible. A discussion on kernel choice is presented as well as a supporting finite-sample simulation. The problem of spectral estimation under a potential lack of finite fourth m...

متن کامل

Spectral Density of Sparse Sample Covariance Matrices

Applying the replica method of statistical mechanics, we evaluate the eigenvalue density of the large random matrix (sample covariance matrix) of the form J = ATA, where A is an M × N real sparse random matrix. The difference from a dense random matrix is the most significant in the tail region of the spectrum. We compare the results of several approximation schemes, focusing on the behavior in...

متن کامل

Convergence Rates of Spectral Distributions of Large Sample Covariance Matrices

In this paper, we improve known results on the convergence rates of spectral distributions of large-dimensional sample covariance matrices of size p× n. Using the Stieltjes transform, we first prove that the expected spectral distribution converges to the limiting Marčenko–Pastur distribution with the dimension sample size ratio y = yn = p/n at a rate of O(n−1/2) if y keeps away from 0 and 1, u...

متن کامل

Positive-Definite l1-Penalized Estimation of Large Covariance Matrices

The thresholding covariance estimator has nice asymptotic properties for estimating sparse large covariance matrices, but it often has negative eigenvalues when used in real data analysis. To fix this drawback of thresholding estimation, we develop a positive-definite l1penalized covariance estimator for estimating sparse large covariance matrices. We derive an efficient alternating direction m...

متن کامل

Positive-Definite 1-Penalized Estimation of Large Covariance Matrices

The thresholding covariance estimator has nice asymptotic properties for estimating sparse large covariance matrices, but it often has negative eigenvalues when used in real data analysis. To fix this drawback of thresholding estimation, we develop a positive-definite 1penalized covariance estimator for estimating sparse large covariance matrices. We derive an efficient alternating direction me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Econometric Theory

سال: 2011

ISSN: 0266-4666,1469-4360

DOI: 10.1017/s0266466610000484